Systematic construction of non‐autonomous Hamiltonian equations of Painlevé‐type. III. Quantization
نویسندگان
چکیده
Abstract This is the third article in our series of articles exploring connections between dynamical systems Stäckel‐type and Painlevé‐type. In this article, we present a method deforming minimally quantized quasi‐Stäckel Hamiltonians, considered Part I to self‐adjoint operators satisfying quantum Frobenius condition, thus guaranteeing that corresponding Schrödinger equations possess common, multitime solutions. As classical case, obtain here both magnetic nonmagnetic families systems. We also show existence multitime‐dependent canonical maps classes
منابع مشابه
Superfield Quantization Method . III . Construction of Quantization Scheme
Quantization procedure in the framework of general superfield quantization method (GSQM), based on the Lagrangian [1] and Hamiltonian [2] formulations for general super-field theory of fields, for irreducible gauge theories in Lagrangian formalism is proposed. Extension procedure for supermanifold M cl of superfields A ı (θ), ghost number construction are considered. Classical and ¯ h-deformed ...
متن کاملa study on construction of iranian life tables: the case study of modified brass logit system
چکیده ندارد.
15 صفحه اولdiscursive motivation/demotivation construction: a case of iranian efl majors
بررسی نقش گفتمان در شکل گیری یا کاهش انگیزش فراگیران زبان خارجی موضوع تحقیق نسبتاً جدیدی است. از این رو، تحقیقات کمی در این زمینه وجود دارد. به منظور پر کردن این خلاء ، مطالعه کنونی به بررسی فرآیند گفتمان مدار شکل گیری یا کاهش انگیزش دانشجویان ایرانی زبان انگلیسی پرداخت. نخست، این مطالعه به صورت آزمایشی با 7 نفر (? دانشجوی پسر و 5 دختر) از دانشجویان سال دوم دوره ی کارشناسی زبان و ادبیات انگلیسی ...
Quantization of bi-Hamiltonian systems
In 1975, one of the present authors 1 showed how to obtain the quantized levels of the nonlinear Schrodinger equation using the action-angle variables (canonical coordinates) of the AKNS scattering data. The symplectic form used to effect the reduction to canonical coordinates was based on the standard Hamiltonian structure for the nonlinear Schrooinger equation. The method used was a nonlinear...
متن کاملQuantization of Non-Hamiltonian Systems
In this paper a generalization of Weyl quantization which maps a dynamical operator in a function space to a dynamical superoperator in an operator space is suggested. Quantization of dynamical operator, which cannot be represented as Poisson bracket with some function, is considered. The usual Weyl quantization of observables can be derived as a specific case of suggested quantization if dynam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studies in Applied Mathematics
سال: 2022
ISSN: ['0022-2526', '1467-9590']
DOI: https://doi.org/10.1111/sapm.12514